MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2017

Calculator-free

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 8 of term 2, 2017

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

Section One: Calculator-free

CALCULATOR-FREE MARKING KEY

(50 Marks)

٦

Question 1

Solution

Direction is positive – the dots rise as the number of boats nominated increase. Association is linear, the dots form a pattern around a straight line

Strength is very good - nearly in a straight line

Marking key/mathematical behaviours	Marks
describes direction and justifies	2
describes form and justifies	2
 describes strength and justifies 	2

Question 2 (a)

Solution

2, 5, 12.5	
Marking key/mathematical behaviours	Marks
identifies second term	1
identifies third term	1

Question 2 (b)

Solution	
30, 10, $3\frac{1}{3}$	
Marking key/mathematical behaviours	Marks
 identifies first term, second term and identifies third term 	3

Question 2 (c)

Solution	
$T_1 = 994, \ T_{n+1} = T_n - 7$	
Marking key/mathematical behaviours	Marks
identifies first term	1
 expresses recursive rule using recursive notation 	1

Question 2 (d)

Solution	
$T_n = 1000 \left(\frac{1}{10}\right)^{n-1}$	
Marking key/mathematical behaviours	Marks
uses notation for the general rule with initial term	1
identifies ratio with power	1

Question 3 (a)

Solution	
4	
Marking key/mathematical behaviours	Marks
 identifies degree of nominated vertex 	1

Question 3 (b)

Solution	
RB forms a bridge because the graph would not be connected if RB was removed.	
Marking key/mathematical behaviours	Marks
identifies RB as a bridge	1
 explains connectedness of graph changing without the bridge 	1

Question 3 (c)

Solution	
BRHTSWMRS	
Marking key/mathematical behaviours	Marks
identifies a trail	1

Question 3 (d)

Question 3 (e)

Solution	
V + f - e = 7 + 3 - 8 = 2	
Marking key/mathematical behaviours	Marks
substitutes into Euler's rule	1
 uses values for v, f, e to match graph 	1

Question 3 (f)

Solution

Yes: Nodes can be divided into two groups (RWT and BMSH) and within each group there is no connection and all edges are from a node in one group to a node in another group.	
Marking key/mathematical behaviours	Marks
 identifies there are 2 groups of nodes hence bipartite 	1
 explains why nodes can be formed into groups 	1

Question 4 (a)

Solution

Number of internet users per 100 people in the country	
Marking key/mathematical behaviours	Marks
Identifies the response variable	1

Question 4 (b)

$0.4 \times 200 + 3 = 83$	
Marking key/mathematical behaviours	Marks
Determines value of the subject of the formula	1

Question 4 (c)

Solution	
Not very reliable. Prediction is extrapolated beyond the data given. At the high end the dots are not very close to the line. (correlation coefficient is le	ss than 0.6)
Marking key/mathematical behaviours	Marks
concludes prediction is not reliable	1
gives 2 reasons to justify the lack of reliability	2

Question 4 (d)

Solution	
With no mobile phones in the population there are still 3 people per 100 using the	e internet.
Marking key/mathematical behaviours	Marks
interprets the vertical intercept	1

Question 4 (e)

Solution	
Positive gradient or rate of change - For every extra mobile phone there is 0.4 ex users. (10 for 4)	tra internet
Marking key/mathematical behaviours	Marks
notes a positive trend	1
details the rate of change	1

Question 4 (f)

Question 5 (a)

٦

Marking key/mathematical behaviours	Marks
determines directed edges for Jon	1
determines directed edges for Kay	1
determines directed edges for Min	1
determines directed edges for Nat	1

Question 5 (b)

Solution JKLMN J 0 1 1 1 0 Κ $0 \ 0 \ 1 \ 0 \ 0$ L 0 0 0 0 0 М $0 \ 0 \ 1 \ 0 \ 1$ Ν $1 \ 0 \ 1 \ 0 \ 0$

Marking key/mathematical behaviours	Marks
labels rows and columns	1
0 along the leading diagonal	1
• 5 x 5 with only 0 or 1	1
1 for wins	1
0 for loss or not player	1

Question 6 (a)

Solution	
Does the use of mobile phones include texting?	
IS the time spent parked at the lights included in the driving?	
Marking key/mathematical behaviours	Marks
Devises a question to clarify the task	1

Question 6 (b)

Solution	
Number of calls made your mobile while driving yesterday	
Number of texts sent from your mobile while driving last Saturday	•
Marking key/mathematical behaviours	Marks
 identifies two numeric variables relevant to the investigation 	2

Question 6 (c)

Solution

Observation - watch people driving and see if they are using their phones Survey - ask drivers Ask police for the data

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

CALCULATOR-FREE MARKING KEY

Marking key/mathematical behaviours	Marks
 identifies 2 ways by which data can be collected. 	2

Question 6 (d)

Solution

It is not texting that causes the accident but the loss of concentration on the task in hand It is due to confounding – the other variable (concentration) is affected by the texting Marking key/mathematical behaviours

Marking Rey/mathematical benaviours	IVIAI NS
identifies confounding	1
 concludes it is not a causal relationship 	1